Vertex coloring of graphs with few obstructions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

Coloring graphs with locally few colors

Assume that a graph G has a good-coloring which uses at most r colors in the neighborhood of every vertex. We call this kind of coloring a local r-coloring . Is it true that the chromatic number of G is bounded? For r = 1 the answer is easy, G is bipartite, as it cannot have an odd circuit . For r = 2, however, the situation is completely different. A graph can be given with arbitrarily large (...

متن کامل

Vertex Decomposable Graphs and Obstructions to Shellability

Inspired by several recent papers on the edge ideal of a graph G, we study the equivalent notion of the independence complex of G. Using the tool of vertex decomposability from geometric combinatorics, we show that 5-chordal graphs with no chordless 4-cycles are shellable and sequentially Cohen-Macaulay. We use this result to characterize the obstructions to shellability in flag complexes, exte...

متن کامل

Total Coloring of Certain Double Vertex Graphs

In this paper we investigate the total coloring number for double vertex graphs of some of the most common classes of graphs. Mathematics Subject Classification: 05C15

متن کامل

Vertex-coloring 2-edge-weighting of graphs

A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈ {1, . . . , k}, to each edge e. An edge weighting naturally induces a vertex coloring c by defining c(u) = ∑ u∼e w(e) for every u ∈ V (G). A k-edge-weighting of a graph G is vertexcoloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for any edge uv ∈ E(G). Given a graph G and a vertex coloring c0, does th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2017

ISSN: 0166-218X

DOI: 10.1016/j.dam.2015.02.015